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N(ε) ∼ ε−2.7 (1)

Ωcr =
eB

γmc
=

3 × 10−2

γ
sec −1 (2)

ρ =
c

3 × 10−2
ε(GeV ) = 1012ε(GeV ) cm (3)
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Figure 1: Cosmic ray support in the interstellar medium

jcr = ncrevD/c = ∇pcr/B (4)

jp =
∇p

B
(5)

jg = −
ρg

B
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jtot = jcr + jg + jp =
∇pcr + ∇p − ρg

B
(6)

∇pcr + ∇p − ρg

B
=

∇B

4π
(7)

ρg = ∇

(

pcr + p +
B2

8π

)

(8)

0.1 Scattering of cosmic rays by Alfven waves

δB⊥ = x̂δB sin(kz − ωt) (9)

v = ŷv⊥ sin(Ωt + φ), (10)
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Figure 2: A cosmic ray and a wave packet
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Let the cosmic ray z position be vzt. Then

(v ×B)z = −ẑv⊥δB

× sin(kz0 + kvzt) sin(Ωt + φ)

or

(v ×B)z =
1

2
v⊥δB

× {cos[(kvz − ω + Ω)t + φ]

− cos[(kvz − ω − Ω)t − φ]}

If vz > 0 and

kvz − ω − Ω ≈ 0 (11)

then the force does not average out, and the, the change
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in pz due to this interaction is of order

∆pz = e

∫

dt

(

v × B

c

)

z

≈
1

2

ev⊥δB

c
×

2π

kvz
cos φ′

= π
eγv⊥

c

δBmc

eB
cos φ′

= πp⊥ sin θ

(

δB

B

)

cos φ′

where we have let the wave packet have a length L =

2π/k and where φ′ = kz0 − φ is the relative phase be-

tween the cosmic ray and the wave.

δ(pc cos θ) = = −p sin θδθ

= πp sin θ

(

δB

B

)

cos φ′
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or

δθ = −π
δB

B
cos φ′ (12)

taking into account the random sign, the average of (δθ)2

per unit time is

(∆θ)2

t
=

π

8
Ω

(

δB

B

)2

since the cosmic ray encounters waves at the rate c/λ ≈

Ω.
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Figure 3: No change in pitch angle unless λ ≈ ρ

Three remarks are worth making.

δθ ≈ ±
δB

B
(13)

kv ≈ Ω (14)

or

λ/2π ≈
v

Ω
≈ rL (15)
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The second remark is: If we consider n waves in our

wave packet we have

(∆θ)2

t
= n

π

8
Ω

(

δB

B

)2

(16)

But for a smooth spectrum the amplitude is of the wave

packet is obtained from a narrower k band ∆k ≈ k/n so

(

δB

B

)2

= ∆kI(k) (17)

and n drops out.
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Dθ =
(∆θ)2

2t
=

π

8
ΩI (18)

A third remark of considerable importance concerns

the resonance condition

kvz = kv cos θ = Ω (19)

or

λ/2π = rL cos θ (20)

and as θ goes through 90 degrees, λ goes to zero and we

have a singular situation.

We will come back to this point.
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z

sinksource

Figure 4: Why the mean speed of a cosmic ray is less than c

How do we connect the lifetime of the cosmic rays in

the disc (≈ 3 × 106 years). The anisotropy corresponds

to a drift velocity vD, then

vD

c
= δ ≈ 10−4 (21)

and vD ≈ ten kilometers per second.

If the mean free path for pitch angle scattering through
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90 degrees is λ, then the lifetime of the cosmic rays is

L2

cλ
= 3 × 106years (22)

which leads to λ ≈ 10pc. or a ninety degree scattering

time of 30 years.

From

v‖
λ

≈
(∆θ)2

t
≈ Ω

(

δB

B

)2

(23)

we find that (kI)1/2 ≈ δB/B = 10−4 .
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vv DA

vA

Instability

vD >

f increases

f constant

Figure 5: Position of the constant f surfaces relative to the pitch and scat-

tering curves and instability

0.2 The Alfven wave instability

What is the origin of these Alfven waves that scatter

cosmic rays?
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Up to this point we have not discussed the source of the

Alfven waves that scatter cosmic rays. There are a num-

ber of possible sources, interstellar turbulence, hot stars,

moving magnetic stars and so forth. But surprisingly the

main source seems to be the cosmic rays themselves. A

detailed kinetic calculation involving the Vlasov equation

for the cosmic rays shows that if the cosmic rays are suf-

ficiently anisotropic they will render Alfven waves carried

by the interstellar medium unstable. If the anisotropy is

due to a bulk drift velocity vD, and if vD > vA, then the
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waves are unstable.

Before we enter into the detailed calculation, of the

expected growth rate for Alfven waves let us see if we can

understand why cosmic rays should make Alfven waves

unstable.
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vv DA

vA

Instability

vD >

f increases

f constant

Figure 6: Position of the constant f surfaces relative to the pitch and scat-

tering curves and instability

Suppose that the cosmic rays have a drift velocity of

VD > VA, and that there are some small amplitude right

moving Alfven waves present. As seen above, the waves

lead to a pitch angle diffusion of the cosmic rays (in the

wave frame) at the rate
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Dθ =
(∆θ)2

2t
≈ Ω

(

δB

B

)2

(24)

The time τ to isotropize these cosmic rays in this wave

frame is

τ =
1

Dθ
=

1

Ω(δB/B)2
. (25)

Before the scattering the cosmic rays would have a linear

momentum

ncrmvD, (26)
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After the scattering, the momentum is

ncrmvA, (27)

so the rate of the loss of cosmic ray momentum is

dPcr

dt
=

ncrm(vD − vA)

τ
. (28)

But this corresponds to a rate of gain of the wave mo-

mentum,

2γPwave = 2γ
(δB)2

vA8π
(29)

since any wave momentum is equal to its wave energy

divided by its phase velocity

Thus, equating these rates and taking m = ΓcrM

where M is the rest mass of the cosmic ray, gives a growth
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rate

2γ =
ncrΓcr(vD − vA)Ω(δB/B)2

(δB)2/8πvA

= ncr
8πM

B2
(vD − vA)vAΩ0

(30)

or

γ =
ncr

n

(

vD − vA

vA

)

Ω0 (31)

γ = Ω0
ncr

n
= 3 × 10−2 × 10−10 =≈ 10−4years −1 (32)

The growth of the Alfven waves must be balanced by

some damping rate Γ.

In a warm partially ionized medium.
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Γ =
1

2
νin (33)

The drift velocity VD for cosmic rays is thus set by

γ(vD) = Γ (34)

But in a fully ionized medium the only damping of

Alfven waves is the process of nonlinear Landau damping

of the waves,

γNL ≈ ω

(

δB

B

)2
vi

vA
(35)

To balance this we must have

γ(vD) = ω

(

δB

B

)2
vi

vA
(36)
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This equation, combined with the pitch angle scatter-

ing requirement on δB/B to balance the drift velocity

against any flow from cosmic ray sources to sinks deter-

mines both vD and δB/B.
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B

cloud

cloud

Figure 7: Cosmic rays passing through clouds

Cosmic ray spallation occurs in clouds but the propa-

gation is set by the inter cloud medium.
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The same result for the growth rate of the instability

should,

of course, be derived by an exact kinetic derivation.

I will briefly describe how such a derivation should go.

One starts with the relativistic Vlasov equation for f

the cosmic ray distribution function in momentum space

defined by.

∆Ncr = f(t, r,p) (37)

The equation is

∂f

∂t
+ v · ∇f + e

(

E +
v × B

c

)

· ∇pf = 0 (38)

This important equation says that f



26

is constant along any cosmic trajectory no matter how

complicated E,B and the cosmic ray orbit are.

We assume there is some zero order f0 characterizing

the equilibrium cosmic ray distribution with its anistropy

and we imagine that an Alfven wave produces a pertur-

bation f1 in its distribution.

This perturbation is described by the Vlasov equation

and we wish to calculate the perturbed cosmic ray current

density

associated with the perturbation.

We substitute this in the dialectic tensor of the com-

bined cosmic ray-background plasma defined by
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ε ·E = E +
4πi

ω
(jp + jcr) (39)
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For an Alfven wave, E has the form

E = Re
(

Êeikz−iωt
)

(40)

From the induction equation (−iω/c)B1 = −ik ×E or ,

B1 =
kc × E

ω
(41)

Therefore the linearization of Equation 38 is

−iωf1 + ikvzf1 +
e

c
(v ×B0) · ∇pf1

= −e

[

E +
v × (k× E)

ω

]

· ∇pf0

= −e

[

(1 −
kvz

ω
)E +

v · E

ω
k

]

· ∇pf0

(42)

It is convenient to introduce cylindrical coordinates p⊥, φ, pz,

in p space. f0 depends only on p⊥ and pz and is independent of

φ, but f1 depends on φ as well as x and p . In these coordinates

we have

e

c
v × B0 · ∇pf1 = −

ev⊥B0

cp⊥

∂f1

∂φ
= −Ω

∂f1

∂φ
(43)
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where Ω = v⊥B0/cp⊥ = eB0/γRmc is the relativistic

cyclotron frequency.

On the right-hand side of this equation

E · ∇pf0 = E cosφ∂f0/∂p⊥ and E · v = Ev⊥ cos φ.

With these simplifications, The equation reduces to

[−iω + ikvz]f1 − Ω
∂f1

∂φ

= −e

[(

1 −
kvz

ω

)

∂f0

∂p⊥
+

kv⊥
ω

∂f0

∂pz

]

E cos φ

= −eAE cos φ (44)

where

A =

(

1 −
kvz

ω

)

∂f0

∂p⊥
+

kv⊥
ω

∂f0

∂pz

(45)

A is an abbreviation for the bracketed expression

This equation is a simple differential equation in φ for f1

. Its solution is

f1 = −eE
1

2

iAeiφ

ω − kvz + Ω
− eE

1

2

iAe−iφ

ω − kvz − Ω

= f+ + f− (46)
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The perturbed resonant current from the right moving cosmic

rays is

j1r =
−ie2

4

∫
(

v⊥A

ω − kvz + Ω

)

d3p(x̂ + iŷ)E (47)

The electromagnetic equations reduce to

k2c2

ω2
= ε0 + εcr

xx (48)

and

εcr
xx = i

4πj1x

ωE
= 2

e2

4

4π

ω

∫

Av⊥
ω − kvz + Ω

d3p (49)

To lowest order

ω0 = kvA (50)

To next order the cosmic ray contribution to ε

then produces a change in ω away from ω0.

That is, ω = ω0 + ω1. Substituting this the above equation we
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get

−
2ω1k

2c2

ω3
0

= −
2ω1

ω0

c2

v2
A

= εcr
xx (51)

ω1 = iγ is imaginary so combining these results we get

γ = π2e2v
2
A

c2

∫

v⊥

[(

1 −
kvz

ω

)

∂f0

∂p⊥
+

kv⊥
ω

∂f0

∂pz

]

δ(kvz − Ω)d3p

(52)
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We can exactly evaluate γ given by for a cosmic ray

distribution which has a bulk velocity vD and is

isotropic in a frame moving with this velocity

with a power law

F =
a

pr
(53)

(r = 4.7 for a −2.7 power law energy spectrum.)

The answer is

Γ =
π2e2

kp1

v2
A

c2
Ncr(p > p1)Cr

vD − vA

vA

=
π

4
Ω0

Ncr(p > p1)

n
Cr

vD − vA

vA

(54)

where

Cr =
r − 3

r − 2
(55)

(See Kulsrud and Cesarsky 1971.) For a spectral index of 2.7,
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r = 4.7 and C4.7 = 1.7/2.7 = 0.6 so (π/4)C4.7 = 0.5.
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z=Lz=-L z=0

SourceSink Sink

z

Figure 8: The source and sinks for the model

0.3 A Model for Cosmic Ray Propagation with

Sources and Sinks

(

δB

B

)2

= kI = E(k) (56)

Let the space dependence of f(µ, z) at z = L/2

be appoximated by
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vz
∂f

∂z
= −

µvf(µ)

L
(57)

From quasi-linear theory the pitch angle scattering equa-

tion, with f(µ) is f(µ, z) can be written

∂f

∂t
−

µvf

L
= Ω

π

4

∂

∂µ

[

E(µ)(1 − µ2)
∂f

∂µ

]

(58)

E(µ) = δB/B is the relative magnetic fluctuation energy

for waves at k(µ) = Ω/vµ in resonance with the cosmic

rays

E(µ) = E [|k(µ)|] = E(Ω/v|µ|) (59)
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Let

f(µ, p) ≈ Ncr(p > p1)F (µ) (60)

Then the growth rate of waves resonant with µ

γ(µ) = γ(k)

= π2e2v
2
A

c2

∫

1 − µ2

pvA

∂f

∂µ
v2δ(µ − µc)

kv
d3p (61)

where µc = Ω/kv

This must balance the nonlinear damping γNL so

γ(µ) = 0.3
Ω

µ

vi

c
E (62)

The problem has been reduced to finding F (µ)

the cosmic ray angular distribution function, and

E(µ) the relative energy of the Alfven waves
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resonant with the cosmic rays at the pitch angle µ,

versus µ.
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E = 1.29

√

c2

vivA

rL

L

Ncr

n∗
µ
√

(1 − µ2) (63)

∂F

∂µ
= 0.49

√

vivA

c2

n∗

Ncr

rL

L

1

µ
√

(1 − µ2)
(64)

The problem at small µ is resolved by mirror reflection

by Alfven waves if µ < muc

µc <
δB

B
=

√

E1 (65)

A detailed analysis by G. Felice and myself leads to

the following result.
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Figure 9: The cosmic ray distribution function near θ = 90 F stands for the

F (µ) − F (0) normalized to its variation in the boundary layer µ < µc. the

dotted line represents the analytic solution without mirroring, and the solid

line is the true distribution including mirroring.
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z

sinksource

Figure 10: Why the mean speed of a cosmic ray is less than c

0.4 Cosmic Ray Pressure and Energy

Since cosmic rays have a pressure gradient along the mag-

netic field a drift velocity results. This drift velocity pro-

duces waves and the momentum of these waves is trans-

ferred to the interstellar medium. As a result the cosmic

rays lose momentum at a rate give by

∂Pcr

∂t
+ V · ∇Pcr = −

4

3
(∇ · V )Pcr (66)
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Correspondingly the cosmic ray distribution function changes

and the effective equation for the cosmic ray distribution

is

∂f

∂t
+ v · ∇f

= −∇ · (Dnn · ∇f) +
1

3
(∇ ·V)p

∂f

∂p

This equation is important for shock acceleration.
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0.5 Fermi Acceleration and Shock Accelera-

tion of Cosmic Rays

In 1949 Fermi (Fermi 1949) developed an origin theory for

cosmic rays that involved a new theory of acceleration of

high energy particles. He envisioned that cosmic rays in

interstellar space would collide with moving clouds and in

the collision the energy of the clouds would be gradually

transferred to the cosmic rays.

δε =
2vuε

c2
≈

2u

c
(67)
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V

cosmic ray 
moving

wall

Figure 11: A cosmic ray reflected from a moving wall

∆ ln ε = Σ
ui

c
(68)

∆ ln ε = Σ
u2

i

c2
= NB (69)

where B is the average change per collision.

If the mean time between encounters is τ , then

the energy after a time t would be
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ε = ε1e
Bt/τ (70)

where ε1 is the initial energy.

Now, Fermi was aware that cosmic rays probably have

a finite lifetime T in the interstellar medium.

dn = −n0e
−t/T dt

T
(71)

This leads to a distribution of cosmic ray energies given

by

noe
−t/T dt

T
= n0

(ε1

ε

)τ/BT dt

Tdε
dε (72)

which yields

dn ∼
ε
τ/BT
1

ε1+τ/Bt
dε (73)
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a power law distribution ε−r with exponent r.

r = 1 +
τ

BT
(74)
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THE ORIGIN OF COSMIC RAYS

The most likely source is supernovae since

a large amount of energy (1041 ergs/sec )

is needed to replace them in 3 million years.

Indeed very energetic electrons are detected

by their synchrotron radiation in expanding

supernova remnants.

But there is a problem of adiabatic deceleration

in an expanding supernova remnant.

Cosmic rays cannot escape along the open field

lines because of the Alfven wave instability.
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shock

v

B
cr

Figure 12: A cosmic ray trapped in expnding supernova remnant
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Thus, if cosmic rays are produced initially at the su-

pernova surface,

their individual energies will decrease

by Rmax/Rmin ≈ 106

and correspondingly more total energy

must be produced by the same factor.

This is avoided if the cosmic ray are produced later

at the supernova shock when the remnant is big and adi-

abatic deceleration is small.

This was first recognized about 1980, and seemed to

solve the origin problem.
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SHOCK ACCERATION

Shock acceleration occurs by first order Fermi acceler-

ation where the cosmic ray always collides with oncoming

mirrors which actually are Alfven waves.

Also, the lifetime is coorelated with the rate of accel-

eration so that the Fermi exponent r = 1 + τ/BT is of

order unity, actually it is two.

To see this consider what happens when cosmic rays

cross a shock wave.
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cosmic ray

u u- +

Shock

Figure 13: A cosmic ray crossing a strong shock

vd = -u-u

-u

vd = -u

vd =

u +

cosmic ray

Alfven wave

shockt=0

vd = u+
v

d

Alfven wave

Figure 14: Excitation of Alfven waves and the modification of the cosmic ray

distribution function
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shock

v
c

L

L

Figure 15: The cosmic ray cross the shock ≈ c/vA times

This picture can be verified analytically in terms of our

equations.
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The cosmic ray kinetic equation from before was

∂f

∂t
+ v · ∇f

= −∇ · (Dnn · ∇f) +
1

3
(∇ · V)p

∂f

∂p

For a shock this becomes

v
∂f

∂x
−

∂

∂x

(

D
∂f

∂x

)

=
1

3
(u+ − u−)δ(x)p

∂f

∂p
(75)

Integrating it across the shock at x = 0 we find the

jump in the gradient of f

−D

(

∂f+

∂x
−

∂f−
∂x

)

=
1

3
(u+ − u−)p

∂f

∂p
(76)

where − is upstream and + is downstream.
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First upstream.

u−
∂f

∂x
−

∂

∂x

(

D
∂f

∂x

)

= 0 (77)

The solution is

f = f− + (f0 − f−)exu−/D : x < 0 (78)

where f0 = f(p, 0). and We assume f(x, P ) → f−(p)

and ∂f/∂x → 0 as x → −∞.

Now downstream.

u+
∂f

∂x
−

∂

∂x

(

D
∂f

∂x

)

= 0 (79)

The solution is

f(p, x) = f0(p) : x > 0 (80)

a constant since the exu+/D homogeneous part of the so-

lution blows up as x → ∞,
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Substituting these into

−D

(

∂f+

∂x
−

∂f−
∂x

)

=
1

3
(u+ − u−)p

∂f

∂p
(81)

we have

(f0 − f−)u− =
(u+ − u−)

3
p
∂f0

∂p
(82)

Let s be is the compression ratio of the shock, (i.e.,

n+ = sn−). It is of order 4 for a strong shock.

Then

p
∂f0

∂p
+ qf0 = qf− (83)

where q = 3s/(s − 1). The solution of this equation is

f+ = f0 =
q

pq

∫ p

0

f−p
′(q−1)dp′ (84)

This equation gives f0(p) the cosmic ray distribution

function downstream in terms of the upstream function
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f(p)

If f0 is very steep function of p than the downstream

function is a pure power law with exponent q. For a

strong shock has with q=4, corresponding to an energy

spectrum with a minus two index.
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